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Abstract. The classical Yang-Mills equation of motion is numerically investigated in the Lorentz gauge for
a SU(2) gauge group. The color-electric field of two point-like charges is studied in the “empty” vacuum
and in a state with an instanton present. The major effect for a fixed orientation of the instanton is that the
color-electric field lines are expelled or attracted from the instanton region depending on the orientation
of the instanton. If over the orientations of the instanton is averaged, this effect drops out. In this case of
a random instanton orientation, we find that the external color-electric field is expelled from the instanton
core. The origin of this effect is discussed.

1 Introduction

One of the most challenging problems in hadron physics
nowadays is to understand the confinement of quarks in
quantum-chromodynamics (QCD), which is the theory of
strong interactions. From large scale numerical investiga-
tions of lattice Yang-Mills theory [1,2], we know that QCD
yields confinement, since Wilson’s area law is satisfied.
This implies that a linear rising confinement potential is
formed between static color sources. Unfortunately, the
numerical efforts have not yet revealed the basic mech-
anism of confinement. The knowledge of the qualitative
mechanism would help to construct effective hadron the-
ories the predictive power of which is not limited by un-
physical quark thresholds [3]. Only effective quark models
which heuristically incorporate the confinement are so far
available. I would like to mention the Global Color Mod-
els [4] which realize confinement either by avoiding the
pole at the real axis of the quark propagator or by infra-
red slavery. In [5] it was proposed that quark confinement
is due to random quark interactions induced by random
gluonic background fields.

A promising idea to understand the feature of quark
confinement from first principles was given by ’t Hooft
and Mandelstam. They propose that the so-called Abelian
gauges are suited to understand the basic mechanism of
confinement which is obscured in other gauges [6]. In these
Abelian gauges magnetic monopoles emerge because of a
residual U(1) gauge degree of freedom which is unfixed [7].
If these monopoles condense due to the Yang-Mills dy-
namics, a dual Meissner effect takes place implying that
the color-electric flux is expelled from the vacuum. This
scenario would naturally explain the linear rising poten-
tial between sources of color-electric flux. Subsequently,
heuristic models were developed which explore the forma-
tion of an color-electric flux tube [8]. However, the dy-

namics which leads to the condensation of the monopoles
is not understood so far.

The original idea of ’t Hooft and Mandelstam has
gained further support by a recent success [9] of Seiberg
and Witten. They showed that the monopoles of N = 2
(non-confining) super-symmetric Yang-Mills theory start
to condense, if the theory is explicitly broken down to N =
1 (confining) SUSY. One should, however, keep in mind
that this scenario in super-symmetric Yang-Mills theory
is quite different from that in standard QCD. Whereas
in the previous case magnetic monopoles are present in
the particle spectrum, magnetic monopoles are induced
by gauge transformations in the latter case.

The quasi-particles of standard Yang-Mills theory
which show up as a solution of the classical Yang-Mills
equation of motion are instantons [10]. An implicit scheme
to construct all instanton solutions was provided in [11].
Novel explicit instanton configurations for a SU(N), N ≥ 3
can be found in [12]. Instantons are generally believed to
play an important role in the QCD ground state. They
may possibly trigger the spontaneous breaking of chiral
symmetry [13] and offer an explanation of the UA(1) prob-
lem [14].

Numerical investigations, based on a classical instan-
ton interaction, show that instantons are strongly corre-
lated in the Yang-Mills ground state implying that they
occur as a liquid [15] rather than in a dilute gas phase [16].
Including quantum fluctuations, it was discovered that in-
stantons possess a medium range attractive interaction
which is solely due to the instability of the perturba-
tive vacuum [17]. The strong-coupling expansion within
the field strength approach to Yang-Mills theory [18] sug-
gests that the interaction due to quantum effects is strong
enough to induce a condensation of instantons [19]. Wheth-
er the instantons exist in a crystal type structure or in a
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strongly correlated liquid is still beyond the scope of the
present approaches.

The question whether instantons are important for the
dual Meissner effect has gained recent attention [20–24]. In
order to address this question, the profile of an instanton
in Abelian gauges were investigated in continuum Yang-
Mills theory [20,21] as well as in the lattice version [22,
23]. In [20], a monopole world line was observed which
penetrates the center of the instanton. In contrast, the
lattice simulations [22,23] have reported closed loops of
monopoles which encircle the center of the instanton. The
length of the monopole loop was investigated throughout
the deconfinement transition. The discrepancy between
the lattice and the continuum approach was clarified by
Brower at al. [21]. They showed that the configurations
which minimize the gauge fixing functional indeed lead
to closed monopole world lines. The conclusion at hand
is that large monopole loops play an important role for
confinement. Recently, lattice calculations reported an en-
hanced probability for monopoles inside the instanton [24]
indicating that instantons play a role in the context of the
dual Meissner effect.

In this paper, we will directly focus on this role of the
instantons. For this purpose, we will numerically solve the
SU(2) Yang-Mills equation of motion with two static color
sources present. The color-electric flux stemming from the
color sources will be investigated in the “empty” vacuum
and in a vacuum where an instanton is present. Whether
the external color-electric field lines are expelled or at-
tracted depends on the orientation of the instanton rela-
tive to the charges. If over the orientation of the instanton
is averaged, the picture changes qualitatively. We will pro-
vide evidence that in the latter case the external field is
repulsed from the instanton core.

The paper is organized as follows: in the following sec-
tion, we briefly review some aspects concerning the rela-
tion of instantons and confinement. In Sect. 3, the Meiss-
ner effect in solid state physics is addressed for a later
comparison with the situation in SU(2) Yang-Mills the-
ory. The numerical approach to solve the classical Yang-
Mills equation of motion is introduced in Sect. 4. It is
shown that this approach nicely reproduces an instan-
ton configuration. In Subsect. 4.3, two point-like color-
electric charges are added. The electric field lines stem-
ming from these charges are investigated in an “empty”
vacuum (Subsect. 4.3) and in a state with an instanton
present (Subsect. 4.4). The case of a random instanton
orientation is presented in Sect. 5. Conclusions as well
as an argument to understand qualitatively the numerical
results of the latter section are left to the final section.

2 Instantons imply confinement?

In this section, we briefly review some results in the liter-
ature which address the question how relevant instantons
are for the confinement mechanism.

This question has a long history [25–27]. A semi-classi-
cal evaluation of the Yang-Mills partition function by Aha-
ronov et al. [25] has indicated that instantons support the

existence of infinite long flux tubes (fluxon). These strings
with non-vanishing flux appear as fluctuations on top of
the instanton background. It was shown that an ensemble
of these random-walking “fluxons” gives rise to Wilson’s
area law. In this scenario, the impact of the instantons on
confinement is secondary.

Considering fluctuations around an instanton, ’t Hooft
showed that large size instantons receive a large weight in
the Yang-Mills partition function [14]. Expectation values
of condensates are even ill-defined due to the contribution
of these large size instantons. Subsequently, it was argued
by Shuryak that the presence of quarks and gluons cure
the large size instanton problem [26]. He showed that the
presence of a non-vanishing quark and/or gluon density
provides a natural cutoff on the instanton radius. As a
consequence, the presence of quarks and gluons yield an
increase in the vacuum energy density implying that they
should be expelled from an instanton dominated vacuum.
This picture naturally supports the MIT bag model of
hadronic matter. Note that we will focus at the classical
level when we will elaborate below the response of the
instantons on the external charges.

In their pioneering work, Polikarpov and Veselov pro-
vided evidence that the instantons play a minor role for
confinement [27]. They studied the emergence of instan-
tons in SU(2) lattice Yang-Mills theory, when a equilib-
rium lattice configuration is cooled down. They extracted
the ratio χ of the string tension of the configuration after
cooling with the one of the lattice equilibrium configura-
tion as function of the topological charge present on the
lattice. One crucial observation is that χ increases with
increasing topological charge Q. For instance, χ reaches
20% for a sufficiently large Wilson loop and for Q = 3.
However, large topological charges rarely appear on the
lattice. The value of χ averaged over the instanton vacua
which appear by freezing out equilibrium configurations is
of order 5%.

The outcome of the latter considerations is twofold:
an instanton medium which emerges from the freezing of
a lattice equilibrium configuration cannot give rise to the
full string tension. Fluctuations on top of the instanton
medium seem to play an important role for confinement.
Recent lattice simulations indicate that these fluctuations
might be magnetic strings, which are attached to the in-
stanton [24]. Secondly, lattice equilibrium configurations
are dominated by fluctuations rather than by the classi-
cal solutions of the Yang-Mills equation of motion. The
later fact is confirmed by recent studies in [23]. The au-
thors investigated the evolution of the topological charge
Q during the cooling process. They found that the lat-
tice equilibrium configurations are dominated by configu-
rations with Q = 0. However, if these configurations are
cooled down, configurations with larger Q-values emerge.
This demonstrates that the fluctuations on the lattice (at
realistic values of the coupling strength) are large enough
to change the topological charge Q.

In this paper, we will elaborate a detailed picture of the
response of an instanton to the presence of static charges
on a “microscopic” level. We will thereby provide new in-



K. Langfeld: On the possibility of the dual Meissner effect induced by instantons 535

N

S

Fig. 1. The Meissner effect: magnetic field lines with a super-
conducting cylinder present (solid lines) and without the cylin-
der (dashed lines)

formation to clarify the role of the instantons for the dual
Meissner effect rather than to estimate the importance of
the (semi-) classical vacuum for the true ground state of
Yang-Mills theory.

3 The Meissner effect of solid state physics

In 1933 Meissner and Ochsenfeld discovered that super-
conductors expel magnetic flux. The microscopic ingredi-
ent which leads to this effect is the condensation of electric
charge, which is carried by pairs of electrons [29]. For later
comparison with the Yang-Mills case, we briefly review
this effect by considering a Landau-Ginzburg theory [30]
which is described in terms of the Lagrangian

L = |(∂µ + iAµ(x))φ(x)|2

+
1

4e2 F2
µν − jµ(x)Aµ(x) + V (φ2) , (1)

where Fµν is the electro-magnetic field strength built from
the gauge potential Aµ, and e is the electric charge. V (φ2)
is the tree-level Higgs-potential, which is minimal for a
non-vanishing value φ2 = φ2

0 providing a condensation
of the scalar field. jµ(x) is the external current. The La-
grangian is invariant under U(1) gauge transformations.
The scalar field φ(x) transforms homogeneously under
these transformations and therefore carries electric charge.

In order to mimic the scenario of a super-conductor,
we assume that the scalar field forms a homogeneous con-
densate φ0 of electric charge, which breaks the U(1) gauge
symmetry. The classical equation of motion can be easily
obtained from (1), i.e.

∂µFµν(x) − 2e2φ2
0 Aν(x) = −jν(x) . (2)

In the gauge ∂µAµ(x) = 0, this equation can be trans-
formed into an Helmholtz equation for the magnetic field

Bi. In the absence of external currents, this equation be-
comes

∂2Bi(x) − 2e2φ2
0 Bi(x) = 0 . (3)

This is the key equation to understand the Meissner effect.
Equation (3) tells us that the magnetic field exponentially
decreases inside a super-conductor with slope given by
the strength of the condensate φ0. Figure 1 qualitatively
shows the behavior of the magnetic field lines, if a super-
conducting cylinder is present. The main observation is
that the magnetic field lines are expelled from the super-
conducting region.

Let us compare London’s equation (2) with the clas-
sical equation of motion of an SU(2) Yang-Mills theory.
This equation can be derived from the Euclidean action
which is defined in the appendix, i.e.

∂µF a
µν [A](x) − εabcF c

νµ[A]Ab
µ(x) = −g2 ja

ν (x) , (4)

where εabc is the anti-symmetric tensor in 3 dimensions,
and ja

ν (x) are the external currents. The field strength, i.e.

F a
µν [A] = ∂µAa

ν − ∂νAa
µ + εabcAb

µAc
ν , (5)

is constructed from the non-Abelian gauge field Aa
µ(x).

The external source ja
µ is a real function of space-time and

can be understood as the current generated by Euclidean
quark fields (see (23)). We will adopt the Lorentz gauge,
∂µAa

µ(x) = 0, and will study the impact of this current on
instantons throughout this paper.

For a vanishing external current (ja
ν = 0), (4) allows for

non-trivial solutions, which are known as instantons [10].
In the gauge ∂µAa

µ(x) = 0, their gauge field and the cor-
responding field strength is given by

Aa inst
µ (x) = ηa

µνxν
2

x2 + ρ2 ,

F a inst
µν (x) = − ηa

µν

4ρ2

(x2 + ρ2)2
, (6)

where ηa
µν are the anti-symmetric ’t Hooft symbols, i.e.

ηa
0i = δai , ηa

ik = εaik , i, k = 1 . . . 3 , (7)

and ρ is the radius of the instanton. Instantons therefore
correspond to spots of non-vanishing field strength.

Let us now briefly discuss the linear response of the
gauge field, i.e. aa

µ(x), to the external source ja
ν (x). De-

composing Aa
µ(x) = Aa inst

µ (x) + aa
µ(x), we assume that

the current is sufficiently weak implying that one can ex-
pand the e.o.m. (4) to linear order in aa

µ(x). If we confine
us to the region close to the center of the instanton, i.e.√

x2 � ρ, the e.o.m. becomes

∂2aa
ν(x) − 3

2
εabcF c

νµ

[
Ainst(x = 0)

]
ab

µ(x)

= −g2 ja
ν (x); . (8)

Since the matrix εabcF c
µν possesses negative eigenvalues,

(8) describes screening of the field strength as well as



536 K. Langfeld: On the possibility of the dual Meissner effect induced by instantons

anti-screening depending on the color index a under con-
sideration. The field strength F a

µν at the instanton center
sets the scale of the (anti-) screening length and therefore
plays a similar role as the scalar field φ2

0 in (2). We learn
from (8) that Meissner type effects occur due to the non-
linear nature of the Yang-Mills e.o.m., if instantons are
present in the ground state of SU(2) Yang-Mills theory.
The crucial difference is, however, that these effects lead
to a repulsion or an attraction of the color-electric field
lines depending on the orientation of the instanton.

In this paper, we will further investigate these effects
resorting to numerical methods in order to go beyond the
linear response theory. We will provide evidence that the
electric flux produced by the charges is expelled from the
instanton core, if we average over the instanton orienta-
tion. In this case, the above leading order effect obtained
by the linear response approach drops out.

4 The dual Meissner effect of SU(2)
Yang-Mills theory

4.1 The numerical approach

In the following, we will work in the Lorentz gauge

∂µAa
µ(x) = 0 . (9)

We will numerically investigate the solutions of the clas-
sical equation of motion (4) (we set g2 = 1 for simplicity)
of SU(2) Yang-Mills theory, which is a non-linear second
order partial differential equation. To this aim, we dis-
cretize the 4-dimensional Euclidean space-time on a grid
consisting of 314 points, and replace derivatives by the
corresponding differences, e.g.

∂µf(x) → 1
2h

(f(x + hêµ) − f(x − hêµ)) , (10)

where êµ is the unit vector in µ-direction, and where h is
the grid spacing. The discretized partial differential equa-
tion is then solved by iteration. For definiteness, we have
chosen Neumann boundary conditions. We have checked
that the impact of the boundaries on the field configura-
tions under consideration is small (see below).

The approach should not be confused with the lattice
version of Yang-Mills theory [1]. The grid is only a mathe-
matical tool to solve the partial differential equation. For
our purposes, we need not worry about local gauge in-
variance, but confine ourself to the definite gauge choice
(9).

In order to get a first idea of the error due to the
discretization (and to check the set up of the program),
we cast the analytically known instanton configuration
Aa inst

µ (x) (6) onto the grid, and checked to what extent
the discretized version of the l.h.s. of (4) reproduces the
zero at the r.h.s. (note that the external source ja

µ is set
to zero at the moment). Choosing x2,3,4 = 0 (this se-
lects a line which passes the center of the instanton) and
e.g. a = 2 and ν = 3, the deviation from zero is shown in

1 11 21 31
grid point

−1.0

−0.5

0.0

0.5

1.0

h=0.8 ρ
h=0.5 ρ
h=0.2 ρ

Fig. 2. The “0” produced from the discretized version of the
e.o.m. (4) by inserting the instanton configuration (6)

Fig. 2 as function of x1 for several values of the grid spac-
ing h. The result should be compared with the intrinsic
scale which is set by the maximum field strength of the
instanton (4 in units of the instanton radius). The most
important observation is that the result becomes signif-
icantly better, if h is decreased. This confirms that the
discretization works correctly.

4.2 The instanton on the grid

In this subsection, we study the grid version of an in-
stanton configuration, which emerges as a solution of the
discretized e.o.m. (4) at zero external source (ja

µ(x) =
0). The SU(2) instanton possesses eight zero-modes, since
the instanton configuration breaks symmetries of the La-
grangian. Four translational, three rotational and one di-
latational degrees of freedom do not lead to a change of
the action. In the pseudo-particle description of the in-
stanton, these zero-modes give rise to collective coordi-
nates, which must be fixed in order to arrive at a definite
configuration. For this purpose, it is convenient to employ
a procedure which minimizes the action by the method
of steepest decent. Then zero-modes do not contribute to
the gradient configuration which is added in each itera-
tion step to the actual profile in order to further reduce
the action. This implies that the starting configuration of
the iteration process completely fixes the collective coor-
dinates of the instanton. Here we have chosen the analytic
profile (6) as the starting configuration.

After convergence was obtained, we have calculated
the color-electric field of our grid configuration with the
help of a discretized version of the field strength tensor (5).
Choosing the color direction a = 1, we learn from (6) and
(7) that the only non-vanishing color-electric field points
in ê1 direction. We then have compared the numerical re-
sult for the space-time dependence of this color-electric
field, i.e. E1

1(x), with the analytic form (6). The result in
shown in Fig. 3. For h = 0.5 ρ, the field strength in the cen-
ter of the instanton is somewhat underestimated, whereas
the result is satisfactory for h = 0.2 ρ. However, the influ-
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Fig. 3. The color-electric field E1
1(r = x1) of an instanton for x2,3,4 = 0: The numerical solution (triangles) in comparison with

the analytic result (6)
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Fig. 4. The color-electric field E1 in the xy-plane produced by
two color-electric charges in a state with one instanton present.
The dashed lines indicate the field lines of the charges in an
empty vacuum

ence of the boundaries becomes visible at the edges of the
grid in the latter case.

4.3 Electric charges in empty space

In this subsection, we study the color-electric field pro-
duced by static color sources in non-Abelian SU(2) gauge
theory. For this purpose, we have chosen the external cur-
rent at the the r.h.s. of the equation of motion (4) to be

ja
µ(x) = δa1 δµ0

[
δ(3)(x − x1) − δ(3)(x − x2)

]
. (11)

This choice corresponds to two static color-electric charges
of color direction a = 1 which are located at the spatial
positions x1 and x2.

In order to get a feeling of the color-electric flux pro-
duced by these sources, we calculated the color-electric
field Ea=1 using an empty space as starting configuration
of the iteration process, which solves the partial differen-
tial equation (4). To be specific, we have chosen

x1 = (4ρ,−4ρ, 0) , x2 = (−4ρ,−4ρ, 0) , (12)

where ρ is an arbitrary length scale at the moment and will
be the instanton radius later. If only sources for one color
direction is present, the non-linear terms of the Yang-Mills
equation of motion (4) drop out, and the e.o.m. essentially
reduces to a Maxwell equation in the relevant color chan-
nel. For a later comparison with the case with an instanton
present, we numerically calculated the color-electric field
E1 in the xy-plane at each grid point. The color-electric
field lines show the behavior anticipated from the analogy
to classical electrodynamics.

4.4 Electric charges in the instanton background

The picture changes drastically, if the vacuum contains an
instanton configuration. We here only consider sufficiently
weak external charges which do not completely deform the
instanton and which therefore preserve the pseudo-particle
character of the instanton. In this limit, we are interested
in the interplay of the color-electric field strengths of the
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Fig. 5. The color-electric field E1 in the xy-plane of the charge
instanton system with the color-electric field of the unper-
turbed instanton subtracted

external charges and the instanton as function of the col-
lective coordinates. Note that in the presence of the exter-
nal charges, the collective coordinates of an instanton in
empty space do not correspond to zero-modes anymore,
but a particular choice of these parameters exists, if the
action is minimal. One possibility to constrain the collec-
tive coordinates is to include the term

λ

∫
d4x

(
F a

µν [Aex] − F a
µν [A]

)2 (13)

to the action. The field Aex is thereby the gauge potential
of a single instanton in empty space with a definite choice
of origin, orientation and radius. The parameter λ acts
like a Lagrange multiplier. For sufficiently small values of
λ, the motion of the instanton along the (former) zero-
mode directions due to the external source is blocked, and
the collective coordinates are dictated by the background
field. Using several (small) values of λ, one verifies that
the field strengths configuration, produced by the instan-
ton and the charges, remains (almost) unchanged by the
additional term (13).

In order to be specific, the iteration process which min-
imizes the action was started with the analytic instanton
configuration (6) (which is also used as the background
field in (13)) casted onto the grid. The upper picture of
Fig. 4 shows the result for t = 0, where the instanton
develops its maximum strength. The color-electric field
lines of the instanton, which point from the right to the
left, are clearly visible. The length of the vectors on the
grid points also give a rough impression of the instanton
field strength profile (6). Some color-electric field lines are
also shown (solid lines). For comparison, the color-electric
field lines of the case without the instanton are shown
as dashed lines, too. A field line is specified by the an-
gle between the field line and the line connecting the two
charges. This makes it possible to compare the situation
with and without instanton. Our main observation is that
the color-electric field lines of the charges are clearly ex-
pelled from the region where the instanton is located.

Let us study this effect, if the location of the two
charges is changed to

x1 = (−4ρ,−4ρ, 0) , x2 = (−4ρ, 4ρ, 0) . (14)

The result is shown in the lower picture of Fig. 4. The
upper charge is the source of the color-electric field, the
lower charge is the drain. One observes that the color-
electric field lines which spread out the upper charge are
pushed back from the instanton, whereas the lines of the
drain charge are pulled in. The net effect of the instanton
is to align the external electric field lines with its internal
orientation.

One might argue that the deformation of the color-
electric field lines of the charges in the presence of the in-
stanton is solely due to the superposition of the instanton
field and the field from the charges. Figure 5 shows that
this is not the case. In this picture, we have subtracted
the color-electric field of a pure instanton (without any
charges present) from the full color-electric field. If the
total field is simply a superposition, one should recover
the Maxwell type field lines (this is what would happen in
classical electrodynamics). The result of this subtraction
is completely different from the field distribution expected
from classical electrodynamics. This is possible due to the
non-linear nature of the classical equation of motion (4).

5 Random instanton orientation

In the previous section, we have investigated the distribu-
tion of the electric field strength, produced by a charge
anti-charge pair, for a definite choice of the instanton ori-
entation. No evidence for the dual Meissner effect was
found so far, since the external color-electric field lines
are attracted or pulled back from the instanton core de-
pending on the orientation. Here, we will study whether
a net repulsion of the color-electric field lines takes place,
if the we average over the instanton orientation. For this
purpose, we will calculate the space-time distribution the
field strength squared F a

µνF a
µν , where we average over the

orientation of the instanton and keep its position fixed.
The case of the random instanton orientation is interest-
ing from a physical point of view for the following reason: a
realistic description of the Yang-Mills ground state resorts
to a liquid of instantons [15]. In this liquid, the orientation
of a particular instanton is arbitrary. The small amounts
of action which are necessary to move the instanton along
its former (i.e. single instanton) zero-mode directions are
provided by the entropy of the medium.

Let us first study the dependence of the instanton in-
teraction with the external charges on the orientation Oab

of the instanton, i.e.

Aa inst
µ (x) = Oabηb

µνxν
2

x2 + ρ2 ,

O =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 , (15)
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Fig. 6. The instanton interaction SI as function of the instan-
ton orientation θ

where Oab is a particular orthogonal matrix parameter-
ized by the angle θ. Since we will switch on electric charges
in color a = 1 direction, it is sufficient for our purposes
to study matrices Oab which rotate the instanton color-
electric field in the x1x2-plane only. The instanton inter-
action SI is defined by

SI = SIC − Sinst − Scharges , (16)

where SIC is the action of the instanton-charge system,
and Sinst and Scharges is the action of a single instanton
and the charges, respectively. If the charges are weak and
far located from the instanton origin, the interaction SI

can be calculated in an elegant way [16], i.e.

S0
I ∝ ηa

µνF a ext.
µν , (17)

where F a ext.
µν is the field strength of the external charges

at the instanton origin, and where the superscript indi-
cates that it was assumed that the this field strength
is slowly varying over the instanton region. If we align
the charges in ê1-direction symmetric to the x2-axis, their
color-electric field at the instanton center is also oriented
in ê1 direction. This implies that S0

I ∝ cos θ for the par-
ticular choice of orientation (15). The numerical result for
SI is shown in Fig. 6. The strengths of the charges ac-
tually yield Scharges/Sinst = 6.7%. The distance of one
charge to the instanton center was 1.7 ρ. A fit according
SI ≈ a cos θ + b is also shown in Fig. 6. A cos θ-modulation
of the data, as predicted by (17), is clearly visible. In ad-
dition, one observes a non-vanishing offset b towards nega-
tive values. This offset can be understood as follows: if we
put the field configurations of the charges and of the un-
perturbed instanton on the grid as starting configuration,
the method of steepest decent further reduces the action
in order to finally arrive at a solution of the Yang-Mills
equations of motion. Since action of the starting configu-
ration does not depend of the instanton orientation, the
angle average of SI is negative. From this argument, it
is obvious that the offset b cannot obtained in the linear
response approach, which is the basis of (17).

Finally, we will average over the θ-angle, which defines
the instanton orientation with respect to the charges. We

−2.0 −1.0 0.0 1.0 2.0
x1/ρ

−0.2
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Fig. 7. (F a
µνF a

µν)1/2(x1, x2, x0,3 = 0) for several values of
x2 (cases a-c) of the charges in empty space (solid) and of
the instanton-charge system with (F 2)1/2 of an unperturbed
instanton subtracted (dashed). In the case of the instanton-
charge system, we have averaged over the instanton orienta-
tions

will study the variation of the field strength squared, i.e.
F a

µνF a
µν(x), in space-time rather than the integrated quan-

tity SI . Since F 2 of a single instanton decreases like 1/r8

for large distances r from the instanton center and since
F 2 of a single charge asymptotically behaves like 1/r4,
it is more convenient for illustration purposes to study
the quantity

√
F 2. In the present investigation, we have

located the charges at

x1 = (ρ,−ρ, 0) , x2 = (−ρ,−ρ, 0) , (18)

Figure 7 shows
√

F 2 of the charge anti-charge pair (solid
lines) as function of x1 (x3,0 = 0) for several values of
x2, i.e. case a x2 = −0.4 ρ, case b x2 = −0.2 ρ and case c
x2 = 0. This result is compared with

√
F 2

cI produced by
the instanton charge configuration (dashed lines), where√

F 2 of a single instanton was subtracted and where over
the orientations of the instanton was averaged. The lat-
ter quantity is therefore a measure of the field strength
which exists on top of that of an unperturbed instanton.
One clearly observes that

√
F 2 produced by the external

charges is suppressed at the space time region occupied
by the instanton. In order to quantify this result, we in-
troduce the ratio

κ(x2) =

[√
F 2 peak

charges(x2) −
√

F 2 peak

cI (x2)
]

√
F 2 peak

charges(x2)
, (19)

where
√

F 2 peak

charges and
√

F 2 peak

cI are the maximum values
of

√
F 2 of the charges in empty space and of the sub-

tracted charge instanton system, respectively, at a given
line (x2, x3,0 = 0). The ratio κ directly measures the sup-
pression of the external color-electric field inside the in-
stanton. The numerical calculation reveals the following
result

x2 0 −0.2 −0.4 −0.6
κ 92% 84% 63% 28%
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One finds that a net suppression of the external field inside
the instanton occurs, if over the instanton orientation is
averaged. The suppression increases towards the instanton
center.

6 Discussions and conclusions

Among many other things, Polikarpov and Veselov studied
the instanton medium which emerges in lattice Yang-Mills
theory, if an equilibrium configuration is cooled down [27].
They found in particular, that this cooled medium exhibits
a non-vanishing string tension, which, however, is only 5%
of the full string tension. Whether this residual confine-
ment is due to some excitations still present on top of
the instantons at the cooled lattice or due to an intrinsic
property of the instanton medium is not clear yet.

In order to provide new information concerning the in-
teresting question whether the instantons play a role for
the dual Meissner effect, we have studied the impact of an
instanton on the color-electric flux produced by two static,
point-like color-electric charges. The classical equation of
motion of a SU(2) gauge theory was numerically solved in
Lorentz gauge. The color-electric field lines of the charges
were investigated in detail in an “empty” vacuum as well
as in a state where an instanton is present. We found that
the external color electric field lines are expelled or at-
tracted depending on the orientation of the instanton rel-
ative to the charges. The net effect is that the instanton
aligns the external field lines which is in accordance with
the result of the leading order of the linear response the-
ory [16]. However, if we average over the orientations of
the instanton, this leading order effect drops out. In sub-
leading order, a substantial repulsion of the color-electric
field lines from the instanton core region survives.

The numerical outcome can be qualitatively under-
stood as follows: in an “empty” space, the electric flux
spreading out the charges distributes over the whole space
in order to avoid large concentrations of field strength
which amounts for a large action. If only charges of unique
color are present, the scenario is the same for the Abelian
(classical electro-dynamics) and the non-Abelian case.
However, the non-linearity of the Yang-Mills equation of
motion (in fact the topological structure of the theory) al-
lows for non-trivial configurations, i.e. instantons, which
are local minima of the Yang-Mills action. These configu-
ration must exhibit a definite strength of the color-electric
and color-magnetic field (see (6)) in order to minimize
the action. Any distortion of the instanton field strength,
e.g. produced by the presence of external charges, yields
a sudden increase of the action. This is the reason that
the color-electric field is expelled from the instanton core
region, once the dominant dipole interaction of the instan-
ton with the charges drops out due to a random instanton
orientation.

Whether this effect is a pre-cursor of quark confine-
ment giving rise to a non-vanishing string tension, if the
Yang-Mills ground state is modeled as a strongly corre-
lated medium of randomly oriented instantons, is an in-
teresting question, which is left to future studies.
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Appendix: Euclidean gauge theory

The Euclidean partition function of a SU(2) gauge theory,
fermions included, is described by the functional integral

Z =
∫

Dq Dq† DAa
µ exp

{
−

∫
d4x

×
[

1
4g2 F a

µνF a
µν + q†(i∂/ + im − Aa

µta)q
]}

, (20)

where the gauge fields Aa
µ are considered as real fields,

and where the fermion fields q transform under the fun-
damental representation of the SU(2) gauge group which
is spanned by the generators ta. g is the gauge coupling
constant and m is current quark mass. The action is invari-
ant, if the fields transform under a global O(4) symmetry,
i.e.

Aa ′
µ = ΛµνAa

ν , q′ = S(Λ)q , (21)

which is the pendant to the Lorentz symmetry in Minkows-
ki space. The orthogonal matrices Λµν and the matrices
S(Λ) are spanned by the anti-symmetric generators ωµν ,
e.g. Λµν = [exp{−ω}]µν . The matrices S(Λ) satisfy

S(Λ)γµS†(Λ) = Λµνγν , (22)

where γµ are the hermitian Dirac matrices which fulfill
{γµ, γν} = 2δµν . From (22), it is obvious that

ja
µ(x) = q†(x) γµ ta q(x) (23)

is a hermitian current which transforms like a O(4) vector.
The zeroth component of this vector is the charge density
which is the subject of investigations in this paper.

Finally, let us check that the coupling of the current
(5) to the gauge fields Aa

µ is correctly chosen, i.e. a gauge
transformation does not induce imaginary parts in Aa

µ.
One easily observes that the transformation

q′(x) = U(x)q(x) , U(x) ∈ SU(2) (24)

leaves the action invariant, if the gauge fields transform
according

taAa ′
µ (x) = U(x) taAa

µ(x) U†(x) − iU(x)∂µU†(x) . (25)

It is easy to verify that the transformation (25) leaves the
gauge field Aa

µ real. The contribution of the interaction of
the quark current and the gauge fields to the Euclidean
action is therefore

Sint = −
∫

d4x ja
µ(x)Aa

µ(x) . (26)
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It is straightforward to derive the equation of motion (4)
from the action in (20) by taking the functional derivative
with respect to the gauge fields Aa

ν(x).
We here provide the right hand side of the equation of

motion (4), i.e. the current, and calculate the gauge fields.
First information on the gauge fields can be obtained by
taking the divergence of the equation of motion. Using the
e.o.m., a direct calculation yields

∂νja
ν (x) = εabcAb

µ(x)jc
µ(x) . (27)

In this paper, we study the response of the gauge fields to
static charges, i.e.

ja
µ(x) = δµ0

∑
i

ρa
i δ(x − xi) . (28)

Equation (27) then tells us that the zeroth component
of the gauge fields at the position of the charges either
vanishes, i.e. Aa

0(t,xi) = 0, or that the gauge fields are
oriented parallel to the charge color vector, i.e. Aa

0(t,xi) ∝
ρa

i .
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